Chapter 3 - Minitab Details

In Minitab, under each procedure, go to Help, click on <u>see also</u> and <u>Methods and Formulas</u> for details about the procedure.

Case 3.1.1. Cloud Seeding to Increase Rainfall – A Randomized Experiment

Step 1: Copy the data into a Minitab Worksheet: use these steps:

File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the csv file case0301.csv

The data will appear as two columns in Minitab with C1 RAINFALL and C2-T TREATMENT. So Column 2 is a Text column with entries UNSEEDED or SEEDED.

Step 2: Display Data,

Go to Data \rightarrow Display Data; Select C1 and then select C2, and click OK to produce a display on the output portion of your Minitab session as shown below:

Data Display

Row	RAINFALL	TREATMENT
1	1202.60	UNSEEDED
2	830.10	UNSEEDED
3	372.40	UNSEEDED
4	345.50	UNSEEDED
5	321.20	UNSEEDED
6	244.30	UNSEEDED
7	163.00	UNSEEDED
8	147.80	UNSEEDED
9	95.00	UNSEEDED
10	87.00	UNSEEDED
11	81.20	UNSEEDED
12	68.50	UNSEEDED
13	47.30	UNSEEDED
14	41.10	UNSEEDED
15	36.60	UNSEEDED
16	29.00	UNSEEDED
17	28.60	UNSEEDED
18	26.30	UNSEEDED
19	26.10	UNSEEDED
20	24.40	UNSEEDED
21	21.70	UNSEEDED
22	17.30	UNSEEDED
23	11.50	UNSEEDED
24	4.90	UNSEEDED
25	4.90	UNSEEDED
26	1.00	UNSEEDED
27	2745.60	SEEDED
28	1697.80	SEEDED
29	1656.00	SEEDED
30	978.00	SEEDED
31	703.40	SEEDED
32	489.10	SEEDED
33	430.00	SEEDED
34	334.10	SEEDED
35	302.80	SEEDED

36	274.70	SEEDED
37	274.70	SEEDED
38	255.00	SEEDED
39	242.50	SEEDED
40	200.70	SEEDED
41	198.60	SEEDED
42	129.60	SEEDED
43	119.00	SEEDED
44	118.30	SEEDED
45	115.30	SEEDED
46	92.40	SEEDED
47	40.60	SEEDED
48	32.70	SEEDED
49	31.40	SEEDED
50	17.50	SEEDED
51	7.70	SEEDED
52	4.10	SEEDED

Step 3: you can un-stack the data. To do this, go to Data \rightarrow Unstack Columns \rightarrow select variable C1 into the window/box labeled Unstack the Data in;

Select C2 into the window/box labeled Using Subscripts in; Store un-stacked data: click on After last column in use;

Un-tick Name the Columns containing the un-stacked data; click OK.

This will create 2 new columns in your worksheet, C3 and C4, which are titled RAINFALL_SEEDED and RAINFALL_UNSEEDED

Data Display

Row	RAINFALL SEEDED	RAINFALL UNSEEDED
1	2745.60	- 1202.60
2	1697.80	830.10
3	1656.00	372.40
4	978.00	345.50
5	703.40	321.20
6	489.10	244.30
7	430.00	163.00
8	334.10	147.80
9	302.80	95.00
10	274.70	87.00
11	274.70	81.20
12	255.00	68.50
13	242.50	47.30
14	200.70	41.10
15	198.60	36.60
16	129.60	29.00
17	119.00	28.60
18	118.30	26.30
19	115.30	26.10
20	92.40	24.40
21	40.60	21.70
22	32.70	17.30
23	31.40	11.50
24	17.50	4.90
25	7.70	4.90
26	4.10	1.00

Step 4: Summary Statistics

Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics;

Select C1 RAINFALL into Variables; select C2 TREATMENT into By Variables and click OK, to see this display on the output portion:

Descriptive Statistics: RAINFALL

Variable RAINFALL	TREATMENT SEEDED UNSEEDED	N 26 26	N* 0 0	Mean 442 164.6	SE Mean 128 54.6	StDev 651 278.4	Minimum 4 1.0	Q1 79 23.7	Median 222 44.2
Variable RAINFALL	TREATMENT SEEDED UNSEEDED	(44 183.	23 15 .3	Maximum 2746 1202.6					

Step 4: Some graphs:

Click on Graph \rightarrow Boxplot \rightarrow Select Multiple Y's Simple option; click on C3 and C4 to select them as variables; click OK, and see the following plot:

Step 5: Normal Probability Plot

Go to Graphs \rightarrow Probability Plot \rightarrow Single \rightarrow Multiple Graphs \rightarrow In separate panels of the same graph; click OK. Select the variables C3 and C4 from the left into the right hand side box; and click OK.

Step 6: Natural Log transform of the two samples.

Go to Calc \rightarrow Calculator \rightarrow Store Result in Variable C5; Under Expression, select Natural log (log base e); it will bring up LN() in the Expression box. Insert C3 within parenthesis, so we have LN(C3) and click ok. This will create a new column C5; you can name it – I called it LOG_SEEDED. Repeat these steps to create a new Column 6: LOG_UNSEEDED.

		X		
	ine			
	C1 RAINFALL Store result in variab	e: LOG_SEEDED		
	ine C3 RAINFALL_SEEI Expression:			
	C4 RAINFALL_UNS LN(C3)	<u>~</u>		
		<u>*</u>		
		Functions:		
	/ 8 9 +			
	4 5 6 -	< > Absolute value		
	1 2 3 * <	(= >= Any		
	0 . [] /	And Arcsine Arccosine		
		Or Arctangent		
		Not Colori		
	<u></u>			
	🗌 Assign as a formu	ıla		
	Help	OK Cancel		
	345.50 6.88551			
Row	RAINFALL SEEDED LOG SEN	EDED RAINFALL UNSEEDED	LOG UNSEEDED	
1	2745 60 7 9	1202 60	7 09224	
2	1697 80 7 4	830 10	6 72155	
2	1656 00 7 4	1216 372 40	5 91997	
1	978 00 6 89	2551 3/5 50	5 8//99	
-	702.40 6.50	5551 545.50	5.04499	
C	/05.40 0.5	DD57 D267 D267	5.77200	
6	489.10 6.1	244.30	5.49840	
/	430.00 6.00	163.00	5.09375	
8	334.10 5.8	14/.80	4.99586	
9	302.80 5.7	1307 95.00	4.55388	
10	274.70 5.63	1568 87.00	4.46591	
11	274.70 5.63	1568 81.20	4.39692	
12	255.00 5.54	4126 68.50	4.22683	
13	242.50 5.49	9100 47.30	3.85651	
14	200.70 5.30	0181 41.10	3.71601	
15	198.60 5.29	36.60	3.60005	
16	129.60 4.80	29.00	3.36730	
17	119.00 4.7	7912 28.60	3.35341	
18	118.30 4.7	7322 26.30	3.26957	
19	115 30 4 7	4754 26.10	3,26194	
20	92 10 1 5	2613 24.40	3 19/59	
20		24.40	2 07721	
21	40.00 3.70	21.70	3.U//JI 2.0E071	
22	32.70 3.48	L/.30	2.830/1	
23	31.40 3.44	11.50	2.44235	
24	17.50 2.80	4.90	1.58924	
25	7.70 2.04	4122 4.90	1.58924	
26	4.10 1.43	1.00	0.00000	

Click on Graph \rightarrow Boxplot \rightarrow Select Multiple Y's Simple option; click on C5 and C6 to select them as variables; click OK, and see the following plot:

Go to Graphs \rightarrow Probability Plot \rightarrow Single \rightarrow Multiple Graphs \rightarrow In separate panels of the same graph; click OK. Select the variables C5 and C6 from the left into the right hand side box; and click OK.

Go to Stat \rightarrow Basic Statistics \rightarrow 2 Variances; select two variables into the box on the right and click OK.

Two-Sample Variance	×
	Each sample is in its own column
	Sample 1: C5 LOG_SEEDED
	Sample 2: 'LOG_UNSEEDED'
Select	Options <u>G</u> raphs <u>R</u> esults
Help	<u>Q</u> K Cancel

Test and CI for Two Variances: C5 LOG_SEEDED, LOG_UNSEEDED

Method

Null hypothesis $\sigma(C5 \text{ LOG}_\text{SEEDED}) / \sigma(\text{LOG}_\text{UNSEEDED}) = 1$ Alternative hypothesis $\sigma(C5 \text{ LOG SEEDED}) / \sigma(\text{LOG UNSEEDED}) \neq 1$ Significance level $\alpha = 0.05$ Statistics 95% CI for Variable N StDev Variance StDevs C5 LOG_SEEDED 26 1.600 2.558 (1.217, 2.273) LOG UNSEEDED 26 1.642 2.696 (1.253, 2.326) Ratio of standard deviations = 0.974 Ratio of variances = 0.949 95% Confidence Intervals CI for CI for StDev Variance Ratio Ratio Method Bonett (0.617, 1.534) (0.380, 2.352) Levene (0.560, 1.521) (0.314, 2.315) Tests Test Method DF1 DF2 Statistic P-Value Bonett 1 - 0.02 0.900 Levene 1 50 0.08 0.781

Two-sample t-test : we are doing the pooled t-test here (**needs normality and equal variances assumptions to be valid**)

Go to Stat \rightarrow Basic Statistics \rightarrow 2-Sample t;

Select Samples in two different columns;

Select C5 into the window/box for the First group, and select C6 into the window/box for the Second group; select Assume equal variances, and click OK to see the following display in the Output area:

(1.253, 2.326)	Two-Sample t: Options
4	Difference = (sample 1 mean) - (sample 2 mean)
Two-Sample t for the Mean C1 Rainfall C2 Treatment C3 Rainfall_Seeded C4 Rainfall_Unseeded C5 C5 LOG_SEEDED C6 LOG_UNSEEDED	Confidence level: 95.0 Hypothesized difference: 0.0 Alternative hypothesis: Difference ≠ hypothesized difference Image: Assume equal variances Help QK Cancel
Select Options Help QK	Graphs C8 C9 C10 C1 ^ Cancel
Two-sample T for LOG_SEEDED vs LOG_UNSE	CEDED
N Mean StDev SE Mean LOG_SEEDED 26 5.13 1.60 0.31 LOG_UNSEEDED 26 3.99 1.64 0.32	
Difference = mu (LOG_SEEDED) - mu (LOG_ Estimate for difference: 1.144	_UNSEEDED)

```
Estimate for difference: 1.144
95% CI for difference: (0.241, 2.047)
T-Test of difference = 0 (vs not =): T-Value = 2.54 P-Value = 0.014 DF = 50
Both use Pooled StDev = 1.6208
```

Welch's t-test

2-Sample t (Test and	Confidence Interval)	2-Sample t - Options
	Samples:	Confidence level: 95.0
	First: 'LOG_SEEDED' Second: LOG_UNSEEDED'	Test difference: 0.0
	C Summarized data Standard Sample size: Mean: deviation: First: Second: Second:	Alternative: not equal
Select	Graphs Options	Help OK Cancel
Help	OK Cancel	

This does not use the Pooled estimate of the standard deviation. These results will differ from results from the 2-sample pooled t-procedure.

Two-Sample T-Test and CI: LOG_SEEDED, LOG_UNSEEDED

Two-sample T for LOG_SEEDED vs LOG_UNSEEDED N Mean StDev SE Mean LOG_SEEDED 26 5.13 1.60 0.31 LOG_UNSEEDED 26 3.99 1.64 0.32 Difference = mu (LOG_SEEDED) - mu (LOG_UNSEEDED) Estimate for difference: 1.144

95% CI for difference: (0.240, 2.047) T-Test of difference = 0 (vs not =): T-Value = 2.54 P-Value = 0.014 DF = 49

Case 3.1.2. Effects of Agent Orange on Troops in Vietnam – An Observational Study.

Step 1: Copy the data into a Minitab Worksheet: use these steps: File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the csv file case0302.csv. The data consists of 2 columns; C1 has Dioxin levels and C2 has VETERAN (Vietnam or Other)

Step 2: you can un-stack the data. To do this, go to Data \rightarrow Unstack Columns \rightarrow select variable C1 into the window/box labeled Unstack the Data in; select C2 into the window/box labeled Using Subscripts in; Store un-stacked data: click on After last column in use; un-tick Name the Columns containing the un-stacked data; click OK. This will create 2 new columns in your worksheet, C3 and C4, which are titled DIOXIN_OTHER and DIOXIN_VIETNAM.

Step 3: Summary Statistics for both groups:

Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics; Select C3 and C4; click OK, to see this display on the output portion:

Descriptive Statistics: DIOXIN

 Variable
 VETERAN
 N
 N*
 Mean
 SE Mean
 StDev
 Minimum
 Q1
 Median

 DIOXIN
 OTHER
 97
 0
 4.186
 0.234
 2.302
 0.000
 3.000
 4.000

 VIETNAM
 646
 0
 4.260
 0.104
 2.643
 0.000
 3.000
 4.000

 Variable
 VETERAN
 Q3
 Maximum
 DIOXIN
 OTHER
 5.000
 15.000
 VIETNAM
 5.000
 45.000

Step 5: Some graphs: Side-by-side Box-plots.

Click on Graph→Boxplot→Select One Y with Groups; Select C4 in the left window/box, and see it appear in the box Graph Variables on the right. Next, click on the box on the right, Categorical Variables for Grouping; select C3 in the left box, and see it appear in the box Categorical Variables for Grouping on the right. Click on Data View and select the following: Interquartile Range box, Outlier symbols, Median symbol, Median connect line. Click OK, and see the following plot:

Using all the data, carry out a 2-sample pooled t-test for comparing the mean dioxin levels in the two populations, after verifying assumptions. Steps are same as shown under Case 2.1.2.

Test and CI for Two Variances: Dioxin_Other, Dioxin_Vietnam

Method

```
Null hypothesis\sigma(Dioxin_Other) / \sigma(Dioxin_Vietnam) = 1Alternative hypothesis\sigma(Dioxin_Other) / \sigma(Dioxin_Vietnam) ≠ 1Significance level\alpha = 0.05Statistics95% CI forVariableN StDev VarianceDioxin_Other972.3025.299Dioxin_Vietnam6462.6436.983(1.811, 3.868)
```

```
Ratio of standard deviations = 0.871
Ratio of variances = 0.759
```

95% Confidence Intervals

			CI	for		
	CI for	StDev	Varia	ance		
Method	Ra	tio	Ratio			
Bonett	(0.414,	2.668)	(0.171,	7.117)		
Levene	(0.803,	1.483)	(0.645,	2.200)		

Tests

			Test	
Method	DF1	DF2	Statistic	P-Value
Bonett	_	_	-	0.792
Levene	1	741	0.10	0.750

Two-sample Pooled t-test - Upper-tailed test

Two-Sample T-Test and CI: DIOXIN_VIETNAM, DIOXIN_OTHER

Two-sample T for DIOXIN_VIETNAM vs DIOXIN_OTHER N Mean StDev SE Mean DIOXIN_VIETNAM 646 4.26 2.64 0.10 DIOXIN_OTHER 97 4.19 2.30 0.23 Difference = mu (DIOXIN_VIETNAM) - mu (DIOXIN_OTHER) Estimate for difference: 0.074 95% lower bound for difference: -0.392 T-Test of difference = 0 (vs >): T-Value = 0.26 P-Value = 0.396 DF = 741 Both use Pooled StDev = 2.6010

Let us repeat the analyses after removing the most extreme outlier, the observation for Vietnam veteran # 646. To do this, go to the worksheet, and make sure you wish to delete Obs 646 under C4. Go to Data \rightarrow Delete Rows; insert 646 in the window for Rows to Delete, and insert/select C4 in the window Columns from which to delete, and click OK. You will see that the worksheet now does not have the obs valued 45 for Vietnam vet #646. Repeat all the previous analyses and see if there is a marked difference in the summary statistics, plots and conclusions from the pooled t-test.

Descriptive Statistics: DIOXIN_VIETNAM, DIOXIN_OTHER

Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median
DIOXIN VIETNAM	645	0	4.1969	0.0827	2.1007	0.0000	3.0000	4.0000
DIOXIN OTHER	97	0	4.186	0.234	2.302	0.000	3.000	4.000
-								
Variable	(Q3	Maximum					
DIOXIN VIETNAM	5.00	00	25.0000					
DIOXIN OTHER	5.0	00	15.000					

Let us repeat the analyses after removing the most extreme outlier, the observation for Vietnam veteran # 645 in addition to #646 we already deleted. To do this, go to the worksheet, and make sure you wish to delete Obs 645 under C4. Go to Data \rightarrow Delete Rows; insert 646 in the window for Rows to Delete, and insert/select C4 in the window Columns from which to delete, and click OK. You will see that the worksheet now does not have the obs valued 25 for Vietnam vet #645. Repeat all the previous analyses and see if there is a marked difference in the summary statistics, plots and conclusions from the pooled t-test.

Descriptive Statistics: DIOXIN_VIETNAM, DIOXIN_OTHER

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median
DIOXIN_VIETNAM	644	0	4.1646	0.0763	1.9354	0.0000	3.0000	4.0000
DIOXIN OTHER	97	0	4.186	0.234	2.302	0.000	3.000	4.000
_								
Variable		Q3	Maximum					
DIOXIN VIETNAM	5.00	00	16.0000					
DIOXIN OTHER	5.0	00	15.000					