Chapter 2 – Minitab Details

Case 2.1.2. Anatomical Abnormalities Associated with Schizophrenia-an Observational Study.

Step 1: Copy the data into a Minitab Worksheet.

Use these steps

File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the Excel file case0202.csv

The data will appear as two columns in Minitab with titles UNAFFECT and AFFECTED.

Step 2: Display Data similar to *Display 2.2 in R&S p. 30*:

Go to Data \rightarrow Display Data; Select C1 and then select C2, and click OK to produce a display on the output portion of your Minitab session as shown below:

Row	UNAFFECT	AFFECTED
1	1.94	1.27
2	1.44	1.63
3	1.56	1.47
4	1.58	1.39
5	2.06	1.93
6	1.66	1.26
7	1.75	1.71
8	1.77	1.67
9	1.78	1.28
10	1.92	1.85
11	1.25	1.02
12	1.93	1.34
13	2.04	2.02
14	1.62	1.59
14 15	1.62	1.59 1.97

Next, create a column of Differences = UNAFFECT – AFFECTED. Click on Calc \rightarrow Calculator; Under Store result in variable, say Difference; under Expression, type C1-C2; and click OK. A new variable called Difference will be created in C3.

na	Calcu	lator		×
пе	C1 C2 C3	UNAFFECT AFFECTED Difference	Store result in variable: Difference Expression: C1-C2	<u>~</u>
				-
			Functions:	
			7 8 9 + = <> All functions	-
			4 5 6 - < > Absolute value	<u> </u>
			1 2 3 * <= >= Any	
			0 . [] / And Arcsine Arccosine	
26			** Or Arctangent	⊥ <u>1</u> 3
		Select	() Not Select	
_				
_			🗖 Assign as a formula	-
_		Help	OK Cancel	

Again, display all three columns by going to Data \rightarrow Display Data; Select C1-C3.

Row	UNAFFECT	AFFECTED	Difference
1	1.94	1.27	0.670000
2	1.44	1.63	-0.190000
3	1.56	1.47	0.090000
4	1.58	1.39	0.190000
5	2.06	1.93	0.130000
6	1.66	1.26	0.400000
7	1.75	1.71	0.040000
8	1.77	1.67	0.100000
9	1.78	1.28	0.500000
10	1.92	1.85	0.070000
11	1.25	1.02	0.230000
12	1.93	1.34	0.590000
13	2.04	2.02	0.020000
14	1.62	1.59	0.030000
15	2.08	1.97	0.110000

Step 3: Summary Statistics for the Difference

Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics;

Select C3 Differences; click OK, to see this display on the output portion:

Descriptive Statistics: Difference

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Difference 15 0 0.1987 0.0615 0.2383 -0.1900 0.0400 0.1100 0.4000 Variable Maximum Difference 0.6700

Step 4: Some graphs:

Click on Graph \rightarrow Boxplot \rightarrow Select Difference; Click OK, and see the following plot:

Histograms: Go to Graph \rightarrow Histogram; Select Difference in the box on the left into the Graph variables box on the right; and click OK, to get this plot.

Step 5: Normal Probability Plot Go to Graphs → Probability Plot → Single; select the variable Difference from the left into the right hand side box; and click OK.

Step 6: Paired t-test and C.I.

Go to Stat \rightarrow Basic Statistics \rightarrow 1-sample t; select C3 Difference into Samples in Columns on the right; click Perform Hypothesized test, with Hypothesized Mean 0; and click OK, to see the following output.

ine\ 1-Sample t (Test and	Confidence Interval)
	Samples in columns: Difference T
<u>C6</u>	C Summarized data Sample size: Mean: Standard deviation: ✓ Perform hypothesis test Hypothesized mean: 0.0
Select Help	Graphs Options OK Cancel

One-Sample T: Difference

```
Test of mu = 0 vs not = 0
Variable N Mean StDev SE Mean 95% CI T P
Difference 15 0.1987 0.2383 0.0615 (0.0667, 0.3306) 3.23 0.006
```

To see the 95% C.I for the mean of Differences, again click on Stat \rightarrow Basic Statistics \rightarrow 1-sample t; select C3 Difference into Samples in Columns on the right; but don't click on Perform Hypothesized test. This will give you the following result.

ſ	One-Sa	ample t for the Mean	X
	C1 C2 C3	Unaffected Affected Difference Difference	-
		One-Sample t: Options	-
		Confidence level: 95.0	
		<u>A</u> lternative hypothesis: Mean ≠ hypothesized mean ▼	
		Help <u>Q</u> K Cancel	
		Select Options Graphs.	
	H	Telp <u>Q</u> K Cance	

One-Sample T: Difference

Variable N Mean StDev SE Mean 95% CI Difference 15 0.1987 0.2383 0.0615 (0.0667, 0.3306)

Step 7: Discussion of Results and Scope of Inference:

The observed p-value of the test is 0.006, which is less than the pre-chosen level of significance $\alpha = 0.05$. Therefore, we reject the null hypothesis at the 5% level of significance. Also, note that the 95% C.I for μ does not include the null hypothesis value of 0, which leads to the same conclusion.

Case 2.1.1. Darwin's Theory on Natural Selection – an Observational Study.

Step 1: Copy the data into a Minitab Worksheet: use these steps: File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the csv file case0201.csv. The data consists of Year in C1 (1976 or 1978) and Depth in C2.

Data Display

Row	Year	Depth
1	1976	6.2
2	1976	6.8
3	1976	7.1
4	1976	7.1
5	1976	7.4
6	1976	7.8
7	1976	7.9
8	1976	8.0
9	1976	8.2
10	1976	8.4
11	1976	8.4
12	1976	8.4
13	1976	8.5
14	1976	8.5
15	1976	8.5
16	1976	8.5
17	1976	8.6
18	1976	8.7
19	1976	8.7
20	1976	8.7
21	1976	8.9
22	1976	8.9
23	1976	8.9
24	1976	8.9
25	1976	8.9
26	1976	9.0
27	1976	9.0
28	1976	9.0
29	1976	9.0
30	1976	9.0
31	1976	9.1
32	1976	9.1
33	1976	9.1
34	1976	9.1
35	1976	9.1
36	1976	9.2
37	1976	9.3
38	1976	9.4
39	1976	9.4
40	1976	9.4
41	1976	9.5
42	1976	9.5
43	1976	9.6
44	1976	9.7
45	1976	9.7
46	1976	9.7
47	1976	9.7
48	1976	9.8
49	1976	9.8

50	1976	9.8
51	1976	9.8
52	1976	9.8
53	1976	9.9
54	1976	9.9
55	1976	9.9
56	1976	9.9
57	1976	9.9
58	1976	10.0
59	1976	10.0
60	1976	10 0
61	1976	10.1
62	1976	10.1
63	1976	10.1
61	1076	10.1
65	1076	10.1
65	1076	10.1
00	1970	10.1
67	1976	10.2
68	1976	10.2
69	1976	10.3
70	1976	10.3
71	1976	10.3
72	1976	10.4
73	1976	10.4
74	1976	10.4
75	1976	10.4
76	1976	10.5
77	1976	10.5
78	1976	10.5
79	1976	10.5
80	1976	10.5
81	1976	10.6
82	1976	10.6
83	1976	10 6
84	1976	10 7
85	1976	10.8
86	1976	11 0
87	1976	11 /
00	1076	11 /
00	1076	11 7
09	1070	11./ 7 1
90	1978	7.1
91	1978	1.9
92	1978	8.0
93	1978	8.4
94	1978	8.4
95	1978	8.7
96	1978	8.7
97	1978	8.8
98	1978	9.0
99	1978	9.0
100	1978	9.1
101	1978	9.1
102	1978	9.1
103	1978	9.2
104	1978	9.3
105	1978	9.3
106	1978	9.4
107	1978	9.4
108	1978	9.5
109	1978	9.6
110	1978	96
111	1978	9.0
+++ 112	1978	9.0
		2.0

113 114	1978 1978	9.6 9.6
115 116	1978 1978	9.7 9.7
117 118	1978 1978	9.7 9.7
119	1978	9.8
120	1978	9.9
122	1978 1978	9.9 9.9
124 125	1978 1978	10.0 10.0
126 127	1978 1978	10.0
128	1978	10.2
130	1978	10.2
131 132	1978 1978	10.2
133 134	1978 1978	10.3 10.3
135 136	1978 1978	10.3 10.3
137	1978	10.3
130	1978	10.4
140 141	1978 1978	10.4
142 143	1978 1978	10.5 10.5
144 145	1978 1978	10.5 10.5
146	1978	10.5
148	1978	10.6
149 150	1978	10.6
151 152	1978 1978	10.6 10.6
153 154	1978 1978	10.7 10.7
155 156	1978 1978	10.7 10.7
157	1978	10.7
158	1978	10.8
160 161	1978 1978	10.9 10.9
162 163	1978 1978	11.0 11.0
164 165	1978 1978	11.0 11.0
166	1978	11.1
168	1978	11.1
170	1978	11.3
171 172	1978 1978	11.4 11.4
173 174	1978 1978	11.4 11.4
175	1978	11.5

176	1978	11.6
177	1978	11.6
178	1978	11.7

Step 2: you can un-stack the data. To do this, go to Data \rightarrow Unstack Columns \rightarrow select variable C2 Depth into the window/box labeled Unstack the Data in;

Select C1 Year into the window/box labeled Using Subscripts in; Store un-stacked data: click on After last column in use;

Un-tick Name the Columns containing the un-stacked data; click OK.

This will create 2 new columns in your worksheet, C3 and C4, which are titled Depth_1976 and Depth_1978.

Step 3: Display Unstacked Data

Data		mlay/
Data	DIS	play

Row	Depth 1976	Depth 1978
1	6.2	7.1
2	6.8	7.9
3	7.1	8.0
4	7.1	8.4
5	7.4	8.4
6	7.8	8.7
7	7.9	8.7
8	8.0	8.8
9	8.2	9.0
10	8.4	9.0
11	8.4	9.1
12	8.4	9.1
13	8.5	9.1
14	8.5	9.2
15	8.5	9.3
16	8.5	9.3
17	8.6	9.4
18	8.7	9.4
19	8.7	9.5
20	8.7	9.6
21	8.9	9.6
22	8.9	9.6
23	8.9	9.6
24	8.9	9.6
25	8.9	9.6
26	9.0	9.7
27	9.0	9.7
28	9.0	9.7
29	9.0	9.7
30	9.0	9.8
31	9.1	9.9
32	9.1	9.9
33	9.1	9.9
34	9.1	9.9
35	9.1	10.0
36	9.2	10.0

37	9.3	10.0	
38	9.4	10.2	
39	9.4	10.2	
40	9.4	10.2	
41	9.5	10.2	
42	9.5	10.2	
43	9.6	10.3	
44	9.7	10.3	
45	9.7	10.3	
46	9.7	10.3	
47	9.7	10.3	
48	9.8	10.3	
49	9.8	10.4	
50	9.8	10.4	
51	9.8	10.4	
52	9.8	10.4	
53	9.9	10.5	
54	9.9	10.5	
55	9.9	10.5	
56	9.9	10.5	
57	9.9	10.5	
58	10.0	10.5	
59	10.0	10.6	
60	10.0	10.6	
61	10.1	10.6	
62	10.1	10.6	
63	10.1	10.6	
64	10.1	10.7	
65	10.1	10.7	
66	10.1	10.7	
67	10.2	10.7	
68	10.2	10.7	
69	10.3	10.8	
70	10.3	10.9	
71	10.3	10.9	
72	10.4	10.9	
73	10.4	11.0	
74	10.4	11.0	
75	10.4	11.0	
76	10.5	11.0	
//	10.5	11.1	
/8	10.5	11.1	
/9	10.5	11.1	
80	10.5	11.1	
81	10.6	11.3	
82	10.6	11.4	
01	10.6	11.4	
84 95	10.7	11.4	
00	11 0	11 5	
80 97	11.0	11.5	
0/	11.4	11.0	
80	11 7	11 7	
69	±±•/	±±•/	

Step 4: Summary Statistics for both groups: Go to Stat →Basic Statistics →Display Descriptive Statistics; select Depth_1976 and Depth_1978; click OK, to see this display on the output portion:

Descriptive Statistics: Depth_1976, Depth_1978

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
Depth_1976	89	0	9.470	0.110	1.035	6.200	8.900	9.700	10.200
Depth_1978	89	0	10.138	0.0961	0.906	7.100	9.600	10.300	10.700
Variable Depth_1976 Depth_1978	Max 11 11	imum .700 .700							

Step 5: Some graphs: Side-by-side Box-plots.

Click on Graph \rightarrow Boxplot \rightarrow Select One Y with Groups; Select Depth from the left window/box, and see it appear in the box Graph Variables on the right. Next, click on the box on the right, Categorical Variables for Grouping; select Year from the left box, and see it appear in the box Categorical Variables for Grouping on the right. Click OK, and see the following plot:

Histograms: Go to Graph \rightarrow Histogram; select With fit; Select Depth_1976 and Depth_1978 in the box on the left into the Graph variables box on the right; select Multiple Graphs in separate panels on the same graph; and click OK, to get this plot.

Step 6: Two-sample t-test: We will check whether the 2-sample pooled t-test is valid here. First, verify the normality and equality of variances assumptions.

Normal Probability Plot : Go to Graphs \rightarrow Probability Plot \rightarrow Single; Select the two variables from the left into the right hand side box; select Multiple Graphs – in separate panels of the same graph and click OK. The points in each plots lie approximately along straight line, and lie within the confidence bands. We may assume that the data is approximately normal in both cases, although there is some curvature at the ends (indicating some departure from normality).

Test for equal variances (needs normality assumption on both samples to be valid)

Go to Stat \rightarrow Basic Statistics \rightarrow 2 Variances; select two variables into the box on the right; click on Options and Hypothesized Ratio, select Variance 1/Variance 2 and click OK. The F-statistic which is the ratio of sample variances is 1.304, and the 95% C.I. for the Variance Ratio is (0.857, 1.987), which includes the null hypothesis value of 1. The p-value of the test is 0.214 > 0.05. Hence we conclude that the data does not provide evidence to reject H0. So we may assume that the two population variances are not significantly different from one another.

Test and CI for Two Variances: Depth_1976, Depth_1978

Method

```
Null hypothesis
                     Variance (Depth_1976) / Variance (Depth_1978) = 1
Alternative hypothesis Variance (Depth 1976) / Variance (Depth 1978) ≠ 1
Significance level \alpha = 0.05
Statistics
                                95% CI for
Variable N StDev Variance Variances
Depth_1976 89 1.035 1.072 (0.769, 1.561)
Depth 1978 89 0.906
                       0.822 (0.589, 1.198)
Ratio of standard deviations = 1.142
Ratio of variances = 1.304
95% Confidence Intervals
                         CI for
       CI for StDev Variance
Batio Batio
Method Ratio
                          Ratio
Bonett (0.885, 1.475) (0.783, 2.175)
Levene (0.901, 1.491) (0.813, 2.222)
Tests
                     Test
Method DF1 DF2 Statistic P-Value
Bonett 1 - 1.10 0.293
Levene 1 176 1.36 0.245
```

Two-sample t-test : we will do the pooled 2-sample t-test here (**needs normality and equal variances assumptions to be valid**)

Go to Stat \rightarrow Basic Statistics \rightarrow 2-Sample t; Select Samples in two different columns; Select in the window/box for the First group, and select group into the window/box for the Second group; select Assume equal variances, and click OK to see the following display in the Output area:

Two-Sample t: Options	
Difference = (sample 1 mean) - (sample 2 mean)	Sample 1: Depth 1978
Confidence level: 95.0	Sample 2: Depth_1976
Hypothesized difference: 0.0	
Alternative hypothesis: Difference ≠ hypothesized difference ▼	
Assume equal variances	
Help <u>O</u> K Cancel	Options Graphs
Help	<u>O</u> K Cancel

Two-Sample T-Test and CI: Depth_1978, Depth_1976

Two-sample T for Depth_1978 vs Depth_1976 N Mean StDev SE Mean Depth_1978 89 10.138 0.906 0.096 Depth_1976 89 9.47 1.04 0.11 Difference = mu (Depth_1978) - mu (Depth_1976) Estimate for difference: 0.669 95% CI for difference: (0.381, 0.956) T-Test of difference = 0 (vs not =): T-Value = 4.58 P-Value = 0.000 DF = 176 Both use Pooled StDev = 0.9730