Chapter 1 - Minitab Details

Case 1.1.1. Motivation and Creativity - A Randomized Experiment

Step 1: Copy the data into a Minitab Worksheet: use these steps:

File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the csv file, case0101.csv. The data will appear as two columns in Minitab with titles SCORE and TREATMENT.

Step 2: Manipulate Data:

The data consists of EXTRINSIC and INTRINSIC treatment groups stacked one on top of the other. To see the data in the form shown in *Display 1.1 in R&S p. 2*, you can un-stack the data.

To do this, go to Data \rightarrow Unstack Columns \rightarrow select variable C1 Score into the window/box labeled Unstack the Data in;

Select C2 TREATMEN into the window/box labeled Using Subscripts in; Store un-stacked data: click on After last column in use;

Un-tick Name the Columns containing the un-stacked data; click OK. This will create 2 new columns in your worksheet, C3 and C4, which are untitled.

You can go into the grey box in C3 and C4 above Row 1 and insert titles: Extrinsic group and Intrinsic group, respectively.

11. Unstack Columns	×
	Unstack the data in: SCORE
	Using subscripts in:
	Include missing as a subscript value
	Store unstacked data:
	C In new worksheet
	Name: (Optional)
	 After last column in use
	✓ Name the columns containing the unstacked data
Select	
Help	OK Cancel

Step 3: Display Data similar to <u>Display 1.1 in R&S p. 2</u>: Go to Data →Display Data; Select C4 Intrinsic group first, and then select C3 Extrinsic group, and click OK to produce a display on the output portion of your Minitab session as shown below:

Data	Displa	v		
Row	SCORE	TREATMENT	SCORE EXTRINSIC	SCORE INTRINSIC
1	5.00	EXTRINSIC	5.00	12.00
2	5.40	EXTRINSIC	5.40	12.00
3	6.10	EXTRINSIC	6.10	12.90
4	10.90	EXTRINSIC	10.90	13.60
5	11.80	EXTRINSIC	11.80	16.60
6	12.00	EXTRINSIC	12.00	17.20
7	12.30	EXTRINSIC	12.30	17.50
8	14.80	EXTRINSIC	14.80	18.20
9	15.00	EXTRINSIC	15.00	19.10
10	16.80	EXTRINSIC	16.80	19.30
11	17.20	EXTRINSIC	17.20	19.80
12	17.20	EXTRINSIC	17.20	20.30
13	17.40	EXTRINSIC	17.40	20.50
14	17.50	EXTRINSIC	17.50	20.60
15	18.50	EXTRINSIC	18.50	21.30
16	18.70	EXTRINSIC	18.70	21.60
17	18.70	EXTRINSIC	18.70	22.10
18	19.20	EXTRINSIC	19.20	22.20
19	19.50	EXTRINSIC	19.50	22.60
20	20.70	EXTRINSIC	20.70	23.10
21	21.20	EXTRINSIC	21.20	24.00
22	22.10	EXTRINSIC	22.10	24.30
23	24.00	EXTRINSIC	24.00	26.70
24	12.00	INTRINSIC		29.70
25	12.00	INTRINSIC		
26	12.90	INTRINSIC		
27	13.60	INTRINSIC		
28	16.60	INTRINSIC		
29	17.20	INTRINSIC		
30	17.50	INTRINSIC		
31	18.20	INTRINSIC		
32	19.10	INTRINSIC		
33	19.30	INTRINSIC		
34	19.80	INTRINSIC		
35	20.30	INTRINSIC		
30 27	20.50	INTRINSIC		
20	20.00	INTRINSIC		
30	21.50	INTRINSIC		
10	21.00	INTRINSIC		
40	22.10	INTRINSIC		
42	22.20	INTRINSIC		
43	23 10	INTRINSIC		
44	24.00	INTRINSIC		
4.5	24.30	INTRINSIC		
46	26.70	INTRINSIC		
47	29.70	INTRINSIC		

Step 4: Summary Statistics for both groups:

Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics;

Select C4 Intrinsic group; click OK, to see this display on the output portion:

Descriptive Statistics: SCORE_INTRINSIC

Variable Ν N* Mean SE Mean StDev Minimum Q1 Median SCORE INTRINSIC 24 0 19.883 0.906 4.440 12.000 17.275 20.400 Q3 Variable Maximum SCORE INTRINSIC 22.500 29.700

Next, repeat for the second group: Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics; Select C3 Extrinsic group; click OK, to see this display on the output portion:

Descriptive Statistics: SCORE_EXTRINSIC

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
SCORE_EXTRINSIC	23	0	15.74	1.10	5.25	5.00	12.00	17.20	19.20
Variable	Max	imum							
SCORE_EXTRINSIC	2	4.00							

Step 5: Some graphs: Side-by-side Box-plots.

Click on Graph \rightarrow Boxplot \rightarrow Select One Y with Groups; Select C1 SCORE in the left window/box, and see it appear in the box Graph Variables on the right. Next, click on the box on the right, Categorical Variables for Grouping; select C2 TREATMENT in the left box, and see it appear in the box Categorical Variables for Grouping on the right. Click on Data View and select the following: Interquartile Range box, Outlier symbols, Median symbol, Median connect line. Click OK, and see the following plot:

Histograms: Go to Graph \rightarrow Histogram; select with fit; Select SCORE_EXTRINSIC and SCORE_INTRINSIC in the box on the left into the Graph variables box on the right; select Multiple Graphs in separate panels on the same graph; and click OK, to get this plot.

Stem-and-leaf plots: Go to Graph→Stem-and-leaf; select SCORE_EXTRINSIC and

SCORE_INTRINSIC in the box on the left into the Graph variables box on the right; and click Ok to see the following:

Stem-and-Leaf Display: SCORE_EXTRINSIC, SCORE_INTRINSIC

Stem-and-leaf of SCORE_EXTRINSIC N = 23 Leaf Unit = 1.0 2 0 55 3 0 6 3 0 5 1 01 7 1 22 9 1 45 (5) 1 67777 9 1 88899

- 4 2 01
- 2 2 2
- 1 2 4

Stem-and-leaf of SCORE_INTRINSIC N = 24 Leaf Unit = 1.0 4 1 2223 4 1 7 1 677 11 1 8999 (5) 2 00011 8 2 2223 4 2 44 2 2 6

1 2 9

Step 6: Normal Probability Plots

Go to Graphs \rightarrow Probability Plot \rightarrow Single; Select the two variables from the left into the right hand side box; select Multiple Graphs – in separate panels of the same graph and click OK.

Note: The y-axis shows percent and values go from 0 to 1. In Minitab, this is the default option under Graphs \rightarrow Probability Plot. This is a Normal Probability Plot. It is not a Quantile-Quantile or Q-Q plot.

To create a Normal Q-Q plot, do the following steps.

Go to Graphs \rightarrow Probability Plot \rightarrow Single; Select the two variables from the left into the right hand side box; select Multiple Graphs – in separate panels of the same graph and click OK.

Click on Scale, and click on Y-Scale Type and click on Score.

Axes and Ticks	Y-Scale Type	Gridlines	Reference Lines	Percentile Line	s
Y-Scale Type					
C Percent					
C Probability					
Score					

Note that the y-axis shows z-scores and not percents in this Q-Q plot.

Note: The information in the Probability plot and the Q-Q plot, about whether points lie along a straight line, is similar. You can use either one to assess normality, as long as you label/understand the plot/axes correctly.

Test for equal variances (needs normality assumption on both samples to be valid)

Go to Stat \rightarrow Basic Statistics \rightarrow 2 Variances; select two variables into the box on the right; click on Options and Hypothesized Ratio, select Variance 1/Variance 2 and click OK.

Two-Sample Variance	×
C1 Score C3 Score_Extrinsic C4 Score_Intrinsic	Each sample is in its own column Both samples are in one column Each sample is in its own column Sample standard deviations Sample variances
Select	Options <u>G</u> raphs <u>R</u> esults
Help	<u>Q</u> K Cancel

Two-Sample Variance: Options	×
Ratio: (sample 1 variance) / (sample 1	2 variance)
Confidence level: 95.0	
Hypothesized ratio: 1	
<u>A</u> lternative hypothesis: Ratio≠ hypot	hesized ratio 💌
□ <u>U</u> se test and confidence intervals b	ased on normal distribution
Help	OK Cancel
Help	OK Cancel

Session

```
Test and CI for Two Variances: Score_Extrinsic, Score_Intrinsic
Method
Null hypothesis
                                Variance (Score_Extrinsic) / Variance (Score_Intrinsic) = 1
Alternative hypothesis Variance (Score_Extrinsic) / Variance (Score_Intrinsic) ≠ 1
Significance level
                               \alpha = 0.05
Statistics
                                                       95% CI for

        Variable
        N
        StDev
        Variance
        Variances

        Score_Extrinsic
        23
        5.253
        27.590
        (15.433, 58.939)

        Score_Intrinsic
        24
        4.440
        19.709
        (11.517, 39.995)

Ratio of standard deviations = 1.183
Ratio of variances = 1.400
95% Confidence Intervals
                                     CI for
                                Variance
           CI for StDev
Method
                Ratio
                                      Ratio
Bonett (0.731, 1.884) (0.535, 3.550)
Levene (0.659, 2.045) (0.434, 4.180)
Tests
                              Test
Method DF1 DF2 Statistic P-Value
           -
Bonett
                   _
                                          0.441
                                  _
             1 45
                               0.36 0.552
Levene
•
```

Two-sample t-test : we are doing the pooled t-test here (**needs normality and equal variances assumptions to be valid**)

Go to Stat \rightarrow Basic Statistics \rightarrow 2-Sample t;

Select Samples in two different columns;

Select C4 Intrinsic group into the window/box for the First group, and select C3 Extrinsic group into the window/box for the Second group; select Assume equal variances, and click OK to see the following display in the Output area:

	Con	
C1 Score C3 Score_Extrinsic C4 Score_Intrinsic	Both samples are in one column Both samples are in one column Each sample is in its own column Summarized data Sample IDs:	
Select	Optio <u>n</u> s	araphs
Help	<u>O</u> K	Cancel
Two-Sample t for the Ma	ean	23
Two-Sample t: Opt		× L
	ions	
C C Difference = (sampl	le 1 mean) - (sample 2 mean)	
C C Difference = (sampl	le 1 mean) - (sample 2 mean) 95.0	
C C Difference = (sampl <u>C</u> onfidence level: <u>H</u> ypothesized difference	le 1 mean) - (sample 2 mean) 95.0 ence: 0.0	•
C C Difference = (sample <u>C</u> onfidence level: <u>Hypothesized difference</u> <u>A</u> lternative hypothe	le 1 mean) - (sample 2 mean) 95.0 ence: 0.0 esis: Difference ≠ hypothesized difference	
C C Difference = (sampl Confidence level: Hypothesized different Alternative hypothe	le 1 mean) - (sample 2 mean) 95.0 ence: 0.0 ence: Difference ≠ hypothesized difference ariances	•
C C Difference = (sampl Confidence level: Hypothesized different Alternative hypothe I Assume equal va Help	le 1 mean) - (sample 2 mean) 95.0 ence: 0.0 esis: Difference ≠ hypothesized difference ariances QK Canc	

Two-sample T for SCORE_INTRINSIC vs SCORE_EXTRINSIC N Mean StDev SE Mean SCORE_INTRINSIC 24 19.88 4.44 0.91 SCORE_EXTRINSIC 23 15.74 5.25 1.1 Difference = mu (SCORE_INTRINSIC) - mu (SCORE_EXTRINSIC) Estimate for difference: 4.14 95% CI for difference: (1.29, 7.00) T-Test of difference = 0 (vs not =): T-Value = 2.93 P-Value = 0.005 DF = 45 Both use Pooled StDev = 4.8541 Note: You should compare the results you obtained here with the Statistical Conclusion in <u>*R&S p. 3*</u>.

Step 7: Discussion of Results and Scope of Inference:

The observed p-value of the test is 0.005, which is less than the pre-chosen level of significance $\alpha = 0.05$. Therefore, we reject the null hypothesis at the 5% level of significance.

Case 1.1.2. Sex Discrimination in Employment - An Observational Study

Step 1: Copy the data into a Minitab Worksheet: use these steps: File \rightarrow Open Worksheet \rightarrow Browse your local directory and upload the csv file case0102.csv. The data consists of SALARY for FEMALES and those for MALES stacked one on top of the other.

Step 2: you can un-stack the data. To do this, go to Data \rightarrow Unstack Columns \rightarrow select variable C1 Salary into the window/box labeled Unstack the Data in;

Select C2 SEX into the window/box labeled Using Subscripts in; Store un-stacked data: click on After last column in use;

Un-tick Name the Columns containing the un-stacked data; click OK.

This will create 2 new columns in your worksheet, C3 and C4, which are titled SALARY_FEMALE and SALARY_MALE

Step 3: Display Data

Row	SALARY	FEMALE	SALARY_MALE
1	3900	4620	
2	4020	5040	
3	4290	5100	
4	4380	5100	
5	4380	5220	
6	4380	5400	
7	4380	5400	
8	4380	5400	
9	4440	5400	
10	4500	5400	
11	4500	5700	
12	4620	6000	
13	4800	6000	
14	4800	6000	
15	4800	6000	
16	4800	6000	
17	4800	6000	
18	4800	6000	
19	4800	6000	
20	4800	6000	
21	4800	6000	
22	4800	6000	
23	4980	6000	
24	5100	6000	
25	5100	6300	
26	5100	6600	
27	5100	6600	
28	5100	6600	
29	5100	6840	
30	5160	6900	
31	5220	6900	
32	5220	8100	
33	5280		
34	5280		
35	5280		
36	5400		
37	5400		
38	5400		
39	5400		
40	5400		

41	5400
42	5400
43	5400
44	5400
45	5400
46	5400
47	5400
48	5520
49	5520
50	5580
51	5640
52	5700
53	5700
54	5700
55	5700
56	5700
50	5700
~ 7	<000
57	6000
57 58	6000 6000
57 58 59	6000 6000 6120
57 58 59 60	6000 6000 6120 6300

Step 4: Summary Statistics for both groups:

Go to Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics; Select Salary_Female and Salary_Male ; click OK, to see this display on the output portion:

Descriptive Statistics: SALARY_FEMALE, SALARY_MALE

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 SALARY_FEMALE 61 0 5138.9 69.1 539.9 3900.0 4800.0 5220.0 5400.0 SALARY_MALE 32 0 5957 122 691 4620 5400 6000 6225

Variable Maximum SALARY_FEMALE 6300.0 SALARY_MALE 8100

Step 5: Some graphs: Side-by-side Box-plots.

Click on Graph \rightarrow Boxplot \rightarrow Select One Y with Groups; Select C1 SALARY in the left window/box, and see it appear in the box Graph Variables on the right. Next, click on the box on the right, Categorical Variables for Grouping; select C2 SEX in the left box, and see it appear in the box Categorical Variables for Grouping on the right. Click on Data View and select the following: Interquartile Range box, Outlier symbols, Median symbol, Mean symbol, Median connect line. Click OK, and see the following plot:

Histograms: Go to Graph→Histogram; select With fit; Select SALARY_FEMALE and SALARY_MALE in the box on the left into the Graph variables box on the right; select Multiple Graphs in separate panels on the same graph; and click OK, to get this plot.

Step 6: Two-sample t-test: we are doing the pooled t-test here. We first verify whether assumptions for this procedure are valid.

Test and CI for Two Variances: Salary_Female, Salary_Male

Method

```
Null hypothesis \sigma(\text{Salary Female}) / \sigma(\text{Salary Male}) = 1
Alternative hypothesis \sigma(Salary\_Female) / \sigma(Salary\_Male) \neq 1
Significance level \alpha = 0.05
Statistics
Variable
             N StDev Variance 95% CI for StDevs
Salary Female 61 539.871 291460.328 (463.067, 650.308)
Salary_Male 32 690.733 477112.500 (499.792, 1016.906)
Ratio of standard deviations = 0.782
Ratio of variances = 0.611
95% Confidence Intervals
                         CI for
        CI for StDev
                       Variance
           Ratio
                          Ratio
Method
Bonett (0.560, 1.167) (0.313, 1.363)
Levene (0.624, 1.361) (0.389, 1.853)
Tests
                    Test
Method DF1 DF2 Statistic P-Value
Bonett - - 0.180
Levene 1 91
                   0.19 0.666
```

Go to Stat \rightarrow Basic Statistics \rightarrow 2-Sample t; Select Samples in two different columns; Select Salary_Female in the window/box for the First group, and select Salary_Male group into the window/box for the Second group; select Assume equal variances, and click OK to see the following display in the Output area:

Two-Sample T-Test and CI: SALARY, SEX Two-sample T for SALARY

 SEX
 N
 Mean
 StDev
 SE
 Mean

 FEMALE
 61
 5139
 540
 69

 MALE
 32
 5957
 691
 122

Difference = mu (FEMALE) - mu (MALE) Estimate for difference: -818 95% CI for difference: (-1076, -560) T-Test of difference = 0 (vs not =): T-Value = -6.29 P-Value = 0.000 DF = 91 Both use Pooled StDev = 595.5707 Try this:

Go to Stat \rightarrow Basic Statistics \rightarrow 2-Sample t; Select Samples in two different columns; Select Salary_Male in the window/box for the First group, and select Salary_Female group into the window/box for the Second group; select Assume equal variances, and click OK to see the numbers given in **R&S**.